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We study the effect of hard-core repulsion (known as the bus effect) between B 
particles on the reaction-diffusion system A + B--. B in the continuous-time 
random walk model in one dimension with the A particles stationary. We show 
rigorously that the survival probability of the A particles is asymptotically 
bounded as Ct >/lim . . . .  { [ - l o g  S(t)]/t ~ >>. C,, where CI and C,_ are con- 
stants. We also do simulations to confirm our results. 

KEY W O R D S :  Bus effect; random walk; survival probability; hard-core 
repulsion. 

1. I N T R O D U C T I O N  

The reaction A + B ~ B is one of the reaction-diffusion systems which has 
been extensively studied. (1-4~ A point of interest in this system is the effect 
of the correlated motion of the particles on the survival probability of the 
A particles. An extreme case of this is the hard-sphere repulsion (also 
known as the bus effect) which prevents one particle from crossing over 
another, t5-7) Recently, Kuzokov and Kotomin (6) studied its effect in one 
dimension and came to the conclusion that the asymptotic survival prob- 
ability gets appreciably altered from e x p ( -  c v / t )  without the bus effect to 
lit with the bus effect. 

In this paper, we prove rigorously that the survival probability of A 
with the bus effect is less than or equal to that without the bus effect. 
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Further, we obtain lower and upper bounds for the survival probability 
S(t) of the A particles as 

C1/> lim - l o g  S(t) >1 C, (1) 
, ~ .:~ t o-5 

Here, C~ and C_, are constants depending on nn, the concentration of B 
particles, but independent of time t. We also did simulations which confirm 
this result. 

The system we consider is as follows. An A particle is kept stationary 
in a one-dimensional lattice. The B particles are initially randomly located 
at different lattice sites based on their concentration. They perform con- 
tinuous-time random walks. These B particles make a transition to the 
lattice site at the right or left (with equal probability) with a transition rate 
of unity per unit time. Note that the results are valid for any transition rate 
D by using the dimensionless variable Dr. However, if the site to which the 
particle is to make a transition is already occupied by another B particle, 
the transition is forbidden and the former B particle remains wherever it 
was. Whenever an A and a B particle come onto the same lattice site, the 
A particle gets annihilated. 

2. BOUNDS ON SURVIVAL PROBABILITY 

Since it was not possible to obtain analytical results for the system 
mentioned above, we obtained bounds in terms of independent motion of 
the B particles. There are, therefore, two cases to be considered, first, the 
independent case where the B particles move independently, and second, 
the bus case where the B particles move with exclusion. In this section we 
prove that the probability of annihilation by time t using the bus effect is 
strictly greater than that without the bus effect. We also prove that this 
probability is smaller than that of independent particles using the rule that 
the j t h  particle (ordering the particles by their original placement from the 
origin) is annihilated when it reaches site j - I .  

2.1. Upper Bound 

We first prove that the survival probability of the A particle with the 
bus effect is in fact lower than that without it (that is, when the particles 
are executing independent motion). To prove this, let us take a stationary 
A particle at site 0 and two diffusing B particles B~ and B, to its right. We 
define ~k(t)=(~k~(t),~kz(t),..., ~Ji(t),...) T, where i=(il,i2) and f f i ( t ) i s  the 
probability of finding B 1 at i~ and B2 at i 2 at time t. Then, 

a~ 
d-7 = M'~b (2) 
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with M ' - - M  r - I .  Here, M is the transition rate matrix for independent 
motion of the two B particles, I is the identity matrix, and M r is the trans- 
pose of M. Here M is given by 

Mo.=O.5[Ji,./,Ji2,j2+l +Ja./,J;~,j_,_l +J~,./26~,.j,+~ +6;2.j2Ja./,_l] (3) 

Equation (2) is to be solved with the boundary conditions ~ i ( t ) = 0  for 
i~ = 0  or i~_=0. For the case with the bus effect, let (9(t) and N' be the 
quantities corresponding to 7/(t) and M'  above. Therefore, 

d(9 
-N ' (9  (4) 

dt 

with N' = N r -  I and N is given by 

f 
--=Mo, i2~>it + 2  

No 0.516~,.j~6~2.j,_- l d- 6i,_.j,_6i,,j , + 1 -}- 26i,,j,6i2.j:], (5) 
G = i  1 + 1 

0, i2~<i1+1 

Defining A~, = f f - (9  and subtracting (4) from (2), we have 

d Ar  = M'~b - N'(9 

= M ' A ~ k + ( M ' - N ' ) ( 9  

= M '  A r  + ( M  r -  N r) (9 (6) 

This equation is similar to Eq. (2) except that it has a source term. There- 
fore, we have 

,dr = ~ f Gij(t, t ')[ ( M  r -  N r) (9(t')]j dt' (7) 
J 

Here, Go(t ) is the Green's function which satisfies the equation 

dGo.(t, t ')/dt = ~ M'ikGkj(t, t') + 6u6(t -- t') (8) 
k 

To verify that Eq. (7) is the solution of (6), we differentiate it with respect 
to t, to get 

d A ~ ( t ) / d t = ~  f dGu(t, t ')/dt [ ( M T - N  r) (9(t ')]jdt'  (9) 
y 
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Substituting for dGu(t, t')/dt from Eq. (8) and interchanging the summa- 
tions in the first term, we get back Eq. (6) after some simplification. 

Gu(t, t') is also the conditional probability of finding the B particles at 
i (that is, B, at i~ and B 2 at i2) at time t given that they were a t j  at time 
t'. Further, if we define the survival probability of the A particle at time t 
as Pj(t, t'), we have 

P j ( t ,  t ' ) = ~ .  Gij(t, t') (10) 
i 

Summing Eq. (7) over i, we get 

zl~bo(t ) =~, f Pj(t, t ' ) [ ( M T - N  T r 
J 

(11) 

where dq;o(t)= 5-'.; A~i(t) and is the excess survival probability without the 
bus effect over that with the bus effect. Now, 

[ (M r -  N T) r = ~, (M r -  NT)]~ ck~(t' ) 
k 

= ~, ( M -  N)kjek( t') (12) 
k 

From Eqs. (3) and (5), we note that in Eq. (12) the matrices M and N dif- 
fer from each other only for k2<~k ~ + 1 [ k = ( k ~ ,  k2)]. Further, r is the 
quantity corresponding to the bus effect and therefore is zero for values of 
k2<<,k,. Therefore, the only contribution to the summation in Eq. (12) 
comes from k~ = k I + 1. Using Eqs. (3) and (5) and the fact that ek is zero 
for k2<~k~, we have 

A~bo(t) = 0.5 y '  y '  j" dt' P~jt,j,_)(t, t') 6k,.k,_-1 r 
kl k2 

x [ 6~, .j, &k,..j, + i + &k,_.j,. &k, .j, - i - 2&k, .j~ 6k,..j,_ ] 

= 0.5 ~' J" dt '  r + ,)(t ' )EP(k,.k,)(t ,  t ' )  
kt 

x P(k, + ,.~, + I)(t, t ' )  -- 2P(k ,,k, + l ) ( t , / ' )  ] (13) 

Now, P(kj,k2)(t, t') is the survival probability at time t with independent 
motion of the two B particles given that the particles were at kl and k2, 
respectively, at time t'. Equation (13) may be understood as follows. The 
difference between the case without the bus effect and that with it occur 
only when the two B particles are at the adjacent lattice sites (say kl and 
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k~ + 1). At this stage, in the former case, transitions to k~, k~ as well as 
k~ + 1, k~ + 1 are allowed each with transition rate 1/2, while these are for- 
bidden in the latter case. The difference between the two cases may there- 
fore be thought of as a "difference source," one at kl ,  k~ plus one at kl + 1, 
k~ + 1 minus twice the source at kl ,  k~ + 1. Since the particles are carrying 
out independent motion, the survival probability may be written as a 
product of the single-particle survival probabilities. Further, the transition 
rates are independent of time. Therefore, the survival probability depends 
only on the difference t -  t', 

Pl~j,k,_}( t, t') =p(k l  ; t -- t') p (kz ;  t -- t') (14) 

Here, p ( k l ;  t) is the survival probability at time t given that there was a 
single B particle at kl at time t = 0 .  Using Eq. (14) in Eq. (13), we get 

dtPo(t ) =0.5 ~, f dt' q~lk~,k, + l~(t ' )[P2(kl;  t, t') + p Z ( k  I + 1; t, t') 
kt 

- 2p(k~; t, t ' )p(k~ + 1; t, t ' )]  (15) 

The quantity inside the square brackets is a perfect square and the ~b's are 
all positive. Therefore d~k o is positive. Thus, we have proved that for a 
single A particle at 0 with two B particles at x and y, respectively, with 
y > x > 0 the survival probability of the A particle with the bus effect is less 
than that without the bus effect. The extension of this result to an arbitrary 
number of B particles is straightforward. This further implies that the 
average survival probability S(t)  with the bus effect with a random initial 
distribution of B particles is less than the average survival probability Sl ( t )  
without the bus effect with the same initial distribution.-" 

S(t )  <~ S l ( t )  (16) 

2 .2 .  L o w e r  B o u n d  

We follow a procedure very similar to the above for getting the lower 
bound. We again first consider the motion of two B particles to one side 
of a stationary A particle. The one-dimensional motion of the two B par- 
ticles is equivalent to the two-dimensional motion of a single particle. The 
only difference is that in this case the absorbing boundaries are placed at 
x = 0 and y = 1. Note that the change in the boundary conditions does not 
in any way change the survival probability for the case with the bus effect, 

-" While we were revising our paper, we learnt that this result can be deduced from 
Lemma 4.12 of Chapter VIII of ref. 9. Also see ref. 10. 
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since particle B_, cannot come to position 1 until particle B) has reached 
position 0. We can write equations similar to Eqs. (2) and (4) and again 
obtain an equation similar to Eq. (13): 

1 ' P '  A ~ o ( t ) = O . 5 ~  f dt' ~b~k,.k~+ )(t )[ Ck,.k,~(t, t') 
kl 

+ Pik, + ,.k, + t i( t, t ') -- 2P'~k,.k~ + l~(t, t ' )]  (17) 

The altered P'~.(t, t ') is given by 

P'(k,.~-,_~( t, t ')  = p ( k l ,  t -- t') p (k2  - 1, t - t ') (18) 

The quantity in the square brackets of Eq. (17) therefore becomes 

[ P k , . k , ( t , t ' ) + P k ~ + l . k , + l ( t , t '  ' t' ' ' )--2Pk,.k, + )(t, )] 

= [ p ( k l , r ) p ( k l - l , r ) + p ( k , + l , r ) p ' - ( k l , r ) ]  (19) 

with r - - t - t ' .  Now, using the method of images, it is easy to show that 

J 
p(j ,  r ) = 2  ~ q( j ' ,  r ) - q ( 0 ,  r ) - q ( j ,  r) (20) 

j '=O 

where q( j ' ,  t) is the probability of finding a particle at j '  at time t given 
that it started from x = 0 at time t = 0 and it was performing a continuous- 
time random walk on an infinite lattice with no absorbers. The term in 
the square brackets of Eq. (19) then reduces to p ( k  1, r)[q(k~ + 1, r ) -  
q(kl  - 1, r)].  Since q is a monotonically decreasing function of x, the total 
quantity is negative. Thus, we have proved that for a single A particle at 
0 with two B particles respectively at x and y with y > x > 0, the survival 
probability with the bus effect is greater than that for the motion of a single 
particle executing a two-dimensional continuous-time random walk with 
absorbing boundaries at x = 0 and y = 1. The extension of this result to an 
arbitrary number of B particles yields 

S( t )  >i S2(t) (21) 

Here S2(t) is the survival probability of the A particle at time t for the 
independent case with the rule that the J th  B particle will annihilate the A 
particle if it reaches site J -  1. The ordering of the B particles is based on 
their initial positions. The initial conditions are the same as for the bus 
case, that is, any site is occupied with probability ns and not occupied with 
probability 1 - ns at t = 0. 
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3. E S T I M A T E S  OF  B O U N D S  

In Section 2 we have shown that S~(t) and S2(t) are the upper and the 
lower bounds for the survival probability of an A particle with the bus 
effect for random initial distribution of B particles. In this section we 
estimate the values of these bounds. 

3.1.  U p p e r  B o u n d  

The S~(t) of Eq. (16) is the survival probability of the A particle with 
independent motion of the B particles put down without multiple 
occupancy. It is easier to estimate S~(t), which is the survival probability 
with multiple occupancy allowed. Let /:(j, t) be the probability that no B 
particle starting at j reaches 0 at time t. It is given by 

?(j, t )=  ~ n~ k=o ~" e-"nP(J' t)k = e-"B~l -mJ.m (22) 

and hence 

Sl(t) = l-I ?(J, t) (23) 
j = l  

Using the asymptotics for p(j, t) 

l o g ' , ( t ) -  ~ - n B [  1-(2/~z) '/2 f s / ' /Sexp(-x2/2)dx]  
j = l  "0 

-(2/r01/-, n s v/tt (24) 

let r(j, t) be the corresponding probability that no particle starting at j 
reaches 0 by time t for the case of no multiple occupancy (at t = 0 )  

r(j, t )=(1  - -nB)+nBp(j ,  t) (25) 

Hence 

Sl(t) = f i  r(j, t) (26) 
j = l  
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The inequality e - X ~ > l - x  immediately yields S~(t)>>.S~(t). Using this 
along with Eqs. (16) and (23), we get 

lim l o g S ( t ) < ~ l o g S , ( t ) < ~ l o g S , ( t ) ~  - nBv/Tt (27) 
t ~ 0  

3.2. L o w e r  Bound  

Let SL(t) be the survival probability in the independent case for a 
finite lattice of size L with no multiple occupancy. Then 

L 

SL(t) = ~ f , ,Q(n, L, t) (28) 
t ~  = 0 

where f,, is the probability of having exactly n particles in L sites 

L! 
f ,  = (nB)" (1 - n s )  L- ' '  (29) 

n! ( L - n ) !  

and 

17! ( L - n ) !  L, L2 
Q(n, L, t) L! ~. p ( x , ,  t) ~. 

+x'1 = I x 2  ~ }'1 

L n  

x . . .  ~ p ( x , , - n  + l, t) 
- v n  = }~1- I 

Here  Y,. = .x'i + 1 and  L i  = L - n + i. N o t e  tha t  

p(x  z - 1, t) 

(30) 

S2(t)= lira SL(t) (31) 
L ~  

for any finite t. This is true even if we let t--. co, provided L is taken 
sufficiently large ( = v / t  log t, say). As shown in the Appendix 

Q(n, L, t) >>. (p( l ,  t) )" (32) 

where l = L - ii + 1 and 

1 L (p( l ,  t ) )  = 7  p(i, t) 
i = l  

We then let t and L both tend to infinity such that L = 
prove that for l ~ co and t--* co 

(p( l ,  t ) )  ... 1 - (1/l)(2t/rc) '/z 

(33) 

x/q log t. We now 

(34) 
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Using the value ofp( j ,  t) from Eq. (20) in Eq. (33), we get 

(p(l,t))=(1/l) ~ [2 ~ q(j,t)--q(O,t)--q(i,t)] 
i = 1  j = O  

=(I/l)(2t/n) '/2 Ii/'/Tdy f]'dx exp(--x2/2) + E (35) 

E is the error term. It arises out of (a) use of the diffusion approximation 
for q(j, t) and (b) the truncation error arising out of converting the double 
sum to a double integral. Both of them are 0(l/t3/2). 

Integrating by parts, we have 

f: ) - y exp(-), '-/2) dy + E (36) 

If we take l = x/~ log(t), we can take the upper limit of each of the integrals 
to be infinity. We have 

(p(l, t)) ~ 1 - (1/l)(2t/n) u2 + E 

Defining 

L L~ 
S'L(t) = Y', 17! (L--n)!  n~(1 --ns) L-" (p(l, t))" (37) 

Taking II = L n s - k L  ~ and 12 = Ln s + kL ~ with k sufficiently large, we 
have 

I2 L! ,L-,, ] 
log[S~.(t)] ~ log  ~ n! (L-n)!  n~(1 - n s )  (p(l, t))" 

n=ll 

~log  n! ( L - n ) !  n~(1 - n o )  L-~ 
n II 

(38) 

Now, 

1 1 
L - n  L ( 1 - n s ) + L n s - n  

(39) 
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for 11 ~< n ~< 12 and ns ~ 1, 

1 1 ( L n s  - ,7 "~ 
L - n  L ( 1 - n s )  1 - L ( 1 - n s ) J  

L(I - ns) (40) 

Therefore, 

log[S~_(t)] ~ l o g  n! ( L - n ) !  n~n~(1 - n s )  L-' '  
n /I 

1 
x [ 1  L(1 ns ) (~[ ) l /2 ]  ''} 

ns (_~) ,/z (41) 
1 - n e  

Therefore, for t and L both tending to oo such that L = v / t  log t we get 

logS(t))logS,_(t),.~logSL(t)>~logS'L(t) 1 - n e  (42) 

This expression may be understood as follows. Our lower bound [obtained 
from Eq. (41)] is essentially a reduction of the average distance between 
successive B particles by unity. The average distance is nothing but 1/n n. 
Hence, the effective concentration becomes 1/(1/nB - 1 ) = 118/( 1 - ns). 

The results of inequalities (27) and (42) are for the survival probability 
of the A particle with B particles on one side of it only. If there are B 
particles on both sides, the survival probability will be the square of the 
above quantity. Thus, we get 

- -21 lo  o 5 l i ra  -2ns (2 t /n )  ~ ~> log S(t) >~ ~ (2t/n) �9 (43) 

4. RESULTS OF SIMULATIONS 

We also did simulations to obtain the survival probability for ii 8 < 1. 
The simulation procedure was as follows. A large lattice with a large num- 
ber of sites in one dimension was randomly filled with A and B particles 
with concentrations n A and ns, respectively. The A particles were left 
stationary while the B particles were allowed to move to their nearest 
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neighboring sites, provided these sites were not occupied by another B 
particle. The time at which the first B particle took a step was sampled 
from the distribution exp( -rot ) ,  where m is the total number of B particles 
in the lattice. Whether the step was to the right or to the left was then 
obtained by comparing a random number with 1/2. The particle was 
allowed to move if the particular step was permitted, that is, if the site was 
empty or occupied by an A particle. If it was occupied by an A particle, the 
A particle was annihilated. The random number generator used was a 
linear congruential generator used with the radiation transport code 
MCNP. It has a period of 2 48. 

Figures 1 and 2 give the results of our simulations. In Fig. 1, the log 
of the survival probability (with the bus effect) is plotted against v / t  for 
various concentrations of B. It is seen that the points fall quite well on a 
straight line. Figure 2 shows similar results for the survival probability 
without the bus effect for nB=0.1  and 0.5, respectively. Again, the survival 
probability shows a straight-line behavior and the slope correspond to 
0.71nn, which is very close to the expected behavior of 2(2/n) ~ nBD ~ on 
theoretical grounds. The value of D used in the simulations was D--0 .2 .  
A comparison of the two figures also shows that the survival probability 
without the bus effect is larger than that with the bus effect. The log of the 
survival probability goes as a function of nB multiplied by x/~. The statisti- 
cal errors associated with the simulations were quite small except at very 
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Fig. 1. Variation of the log of the survival probability with t ~ with the bus effect for con- 
centration of the B particle n B = 0.8 (A), 0.6 (D), 0.5 (*), 0.4 (@), 0.3 (+), and 0.1 (C)). 
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Fig. 2. 
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low survival probabilities. To  check finite-size effects, simulations were per- 
formed with three different sizes: 10 4 , 10 5 , and 10 6 . The results indicate no 
finite-size effects for lattices of  these sizes. 

APPENDIX 

To prove that Q(n, L, t) >1 (p ( l ,  t ) )"  we first prove the identity 

L 

n~1(n,L,t)= L ~ pilq(n--i,L,t) 
i = l  x l = l  

where 

(A1) 

, .  , .  L _ _  

~(n, L, t )=  Z ~ " ~, 1--[ p(xk, t) 
x l = l  . x ' 2 = x  I X n = X n _  I k = l  

and pj =p(xj, t) and by definition t~(0, L, t) = 1. 
The proof  is by induction on L and n. 

(A2) 
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The proposition is trivially true for L = 1 for all n. Also, it can be 
easily verified to be true for n = 2 for all L. We assume it to be true Vm ~> 1 
for 1 <~j<~(n-1)  and for 1 <<.rn<~L f o r j = n  and then prove that 

L 

n0(n, L + 1, t) = ~ pi 10(n -- i, L + 1, t) (A3) 
i = 1  x l = l  

Now, 

L + I  L + I  L + I  n 

O(n, L + 1, t) = • ~. "'" Y'. I--1 PE (A4) 
X I ~ I X 2 = . \ -  I 2 r  k =  1 

We show that the coefficients of (Pt+~)J are the same on both sides of 
Eq. (A3) for 1 ~<j~<n. Let the coefficients on the lhs and the rhs be, respec- 
tively, Cj and Dj. Clearly 

Cj=n~(n-j ,  L, t) (A5) 

since the only terms contributing to it are those with the first (n - j )  x's not 
equal to L + 1 and the remaining equal to L + 1. 

The rhs of Eq. (A3) looks something like 

L + I  L + I  L + I  L + I  

E P, E P2 E "'" E P,, 

L + I  L + I  L + I  L + I  

+ ~'. P~ 2 P2 Z "'" Z P,- I  
X l ~ l  .x'2 ~ I X3 ~ .x'2 Xn_  i ~ . ~ n _ 2  

L + I  L + I  L + I  L + I  

+ "" F~ p~ F. P2 E P , , - i+ ,+  "" E P7 
1 1 x n - i +  I = x n - i  Xl ~ 1 

The contribution to (PL + t)J comes from two kinds of terms. 

(i) xt = L +  1; this will be for the first j terms only and each term 
contributes exactly O(n-j,  L, t). 

(ii) x l # L +  1. Only the first n - j  terms contribute to this and the 
contribution of the ith term ( 1 ~< i <~ n - j )  is ~ 1  = ~ pi ,~(n - j  - i, L, t). 

We have 

n - j  L 

Dj =j~(n - j ,  L, t) + ~ ~ p', 0(n - - j -  i, L, t) (A6) 
i ~  I X l =  1 

822/84/3-4-25 
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But, by the induction hypothesis, the second term on the rhs is nothing 
but ( n - j )  ~(n - j ,  L, t), and 

D i =j0(n - j ,  L, t) + (n - j )  0(n - j ,  L, t) (A7) 

Using Eqs. (A5) and (A7), we see that C j = D j .  Thus Eq. (A1) is 
proved. We use this now to prove that 

Q(n, L, t) >>. (p( l ,  t ) )"  (A8) 

From Eq. (30), we have that 

n ! ( L - n ) !  / /+1 /+i - I  t+,,-I 
O(n ,L, t )  L! Z Z ""  Z "'" Z 

x l = l  .x'2 = Xl + 1 .x~ xn~xn-I 

• f i  p ( x  k --  k + 1, t) 
k = l  

L~ 
I X l  .x'n-I  k =  1 

(A9) 

We prove Eq. (A8) by induction on n. It can be easily seen to be true for 
n = 2  for all L>~2. Using Eq. (A2) in Eq. (A9), we have 

n! ( L  - -  II)! 
Q(n, L, t) = L! ,~(n, l, t) 

L! i= l .,L : l 

_ ( n - - 1 ) ! ( L - - n ) !  ~ ~ p i T ( n _ i , l  ) 
L! 

i = l  x l = l  

x Q ( n -  i, li, t) (A10) 

where 

( l + i -  1)! 
T(i, l) 

(l-- 1)! i! 
(Al l )  

and li = l + n -  i -  1. Using the induction hypothesis, we have 

/ 

Q ( n , L , t ) > ~ ( n - 1 ) ! ( L - n ) !  ~, ~. 
L! i=l .,-1 = l 

p'~(p(/, t))"-' T(n - i ,  1) (A12) 



A -t- B ~ B Reaction wi th  Hard-Core Repulsion 711 

By the power  mean  inequal i ty ,  we have 

/ 

P'I >~l(p(l, t ) ) '  (A13) 
X l = l  

Using Eq. (A 13) in Eq. (A 12) we have 

Q ( n , L , t ) > ~ ( n - - 1 ) ! ( L - n ) !  l ( p ( l , t ) ) "  ~ T ( n - i , l )  (A14) 
L! i=1 

It is easy to show tha t  

L~ 
l ~ T ( n - - i , l ) =  

i =  i ( 17  - 1 )! (L  - n)! 
(A15) 

Therefore,  

Q(n, L, t) >i (p ( l ,  t) )"  (A16) 
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